

 RESEARCH REPORT SERIES
(Disclosure Avoidance #2018-02)

Rosetta Wiki 1.0 User Guide:

Companion to Rosetta Wiki

Nelson Chung, Steve Clark, Philip Leclerc, Aref Dajani and Phyllis Singer

Center for Disclosure Avoidance Research

U.S. Census Bureau

Washington DC 20233

Report Issued: September 2018

Disclaimer: This report is released to inform interested parties of ongoing research and to encourage

discussion of work in progress. The views expressed are those of the authors and not necessarily those

of the U.S. Census Bureau.

ii

Table of Contents
1 Introduction .. 4

2 What is the Rosetta Wiki? .. 4

3 Related Work .. 4

4 Motivation ... 4

5 Authors ... 5

6 Using the Rosetta Wiki………………………………………………………………….. 5

6.1 Structure of the Rosetta Wiki…………………………………………………………………………………..……………5
6.2 Locating the Rosetta Wiki………………………………………….……………….……..………………………………… 6
6.3 Example of Using the Rosetta Wiki…………...………………………….………………………….….……………… 6

7 Next Steps……9

8 Conclusion……………..…….…..9

9 References…………..........………….……………………………………………………………………………………………………....9

Appendix A: RStudio………….……..…10

Appendix B: Getting Started……………….…………………………………………………………………………………….……………12

B.1 Opening a Hello World Session...………… …..………….…….………………………………………………..…….12
 B.1.1 Opening a Hello World Program in Linux..……………………………………………………………12
 B.1.2 Opening a Hello World Program in PC…………………………………………………………………12
B.2 Running a Hello World Program…………………………………………………………………………………………14
B.3 Terminate a Session…………….………………………………..…….……………………………………………………..14

Appendix C: Beginning Functions…..……………………………………………………………………………………………………...15

C.1 Set Working Directory and Return Working Directory…………………………………….………..…………15
C.2 Install and Load Add-on Package……….……….………………………………………………….……………….....16
C.3 Concatenate Matrices…..……………………………………………………………………………………….……………17

C.3.1 Create a 2x4 Matrix……….……………………………………………………………………………………17
C.3.2 Join Matrices Horizontally……………………………………………………………………..……………18
C.3.3 Join Matrices Vertically………………………..……………………………………………………………..18

C.4 Matrix Mathematical Operations………………….………………………..………………………………………….19
 C.4.1 Transpose a Matrix………………………………………………………………………………..……………19

 C.4.2 Multiply Matrices…………..………..…………………………………………………………………………20
C.4.3 Invert a Matrix………………………………………………..…………..………………………….………….20

C.5 Merge Datasets……..………….……………….……………………………..…………………………………..………….21
C.6 Convert Numeric to Character String……..……………………..……….…..………….………………………….22
C.7 Concatenate Character Strings Separated by a Comma…….…....…..…………………….………………22
C.8 Concatenate Numbers Separated by a Space………….……….……..………………………………………….22
C.9 Round Numbers…………………………………..………………………………...……………………………………….…23

iii

C.10 Format Numbers to Four Significant Digits.…………………………………..….…………………………..…23
C.10.1 Produce Designated Number of Significant Digits Using C++ Style Formatting….23
C.10.2 Produce Numbers with Leading Spaces………………….…………………………………………24
C.10.3 Produce Numbers in Scientific Notation Using C++ Style Formatting……….....……24
C.10.4 Produce Numbers with Positive and Negative Signs using C++ Style Formatting.24

C.11 Create a Function…………………….…………………………………………..…………………….…………………….25
C.12 Impute Missing Values Using Conditional Processing……………………………………..…..…………...26

C.12.1 Create a Vector with Missing Values…………………………………………………………….…..26
 C.12.2 Impute Missing Values of a Vector Using Conditional Processing……..…………..….27
 C.12.3 Collapse a Variable…………………………………………………………………..………..…………..…28

 Appendix D: Beginning Statistics…………..………………………………………………………………………………………………29
D.1 Compute Frequencies………………..……………………………………………………………….……………………..29
D.2 Compute Total Proportional Frequencies..…………………………………………………………………………30
D.3 Compute Row Proportional Frequencies ….………………………………………………….……………………31
D.4 Compute Column Proportional Frequencies.………………………………………………….………………….32

Appendix E: Advanced Statistical Modeling ………………………………………….…………………………….………………..33
E.1 Run Fisher Exact Test……………………………………………………..……………………….………….………………33
E.2 Add Laplace Noise to a Variable………………………...……..…….………..……………………….……………...34
E.3 Add Gaussian Noise to a Variable………………………………………..…………..………………….……………..35

4

1 Introduction
This document introduces the content and the motivation behind the U. S. Census Bureau Rosetta Wiki.
It directs the reader to the Wiki’s online location, provides an example on how the Wiki is used, and
contains instructions on expanding the Wiki. In addition to the main content, appendices guide the
reader on using the code editor RStudio, which the primary author has offered for R instruction at the
Center for Disclosure Avoidance Research (CDAR) and has made available a hard-copy version of the
Wiki code. There are no Census Bureau data presented in this user guide.

This user’s guide is geared towards both new and proficient statisticians and programmers. As a result,
you will find material presented at various skill levels. If you have any questions, feel free to contact the
first author, Nelson Chung, at x3-3490.

2 What is the Rosetta Wiki?
There are several major ways to learn software; among them are reading documentation, attending a
class where one observers as an instructor, inheriting code in a language one does not know, and being
coached by a mentor or colleague one-one-one. The former often entails a steeper learning curve. The
latter only enables the student to learn specific tasks, without the theoretical knowledge necessary to
solve problems when unforeseen roadblocks appear. The Rosetta Wiki offers what works best from each
method; it is a repository of task-driven code designed to enable programmers from diverse
backgrounds, such as software engineering, data analysis, statistics, and applied mathematics with
experience in at least one of the available languages to translate code to accomplish their task from a
known coding language into corresponding code for accomplishing their task in a coding language they
do not yet know. The Rosetta Wiki currently contains code in three languages: R, Python (version 3.4),
and SAS.

3 Related Work
Mike Mol also created a repository of tasks in over 650 different programming languages, ranging from
Ada to Ruby, called Rosetta Code (2007). This Rosetta Wiki will focus on tasks of primary interest to the
U.S. Census Bureau; i.e., writing statistical and modeling software, and is geared towards Census
employees. This assumes that work is conducted behind the U. S. Census Bureau firewall in the presence
of the usual IT restrictions on program installation. Helper programs, modules, and libraries available to
Census employees are present in the user’s system PATH.

Books for translating between statistical programming languages have previously been authored (Klein
and Horton 2014; Muenchen 2016; Ohri 2017). This Rosetta Wiki is a similar, interactive resource that is
not only open-source, but also easier to implement.

4 Motivation
The Rosetta Wiki grew out of the need for statisticians at CDAR to transition from SAS to R and Python.

The Wiki’s code accompanied the lecture notes for R training. It can also serve as a tool for new hires,

proficient typically in R or Python, to learn SAS in order to communicate with the U. S. Census Bureau’s

more seasoned staff.

5

5 Authors
Code for the Rosetta Wiki was written by the authors of this document, under the general direction of
Aref Dajani. Nelson Chung was primarily responsible for the R code, Philip Leclerc for the Python code,
Steve Clark and Phyllis Singer for the SAS code. The Wiki was beta-tested by several mathematical
statisticians in CDAR. To ensure objectivity, each statistician was permitted to test code in the same
module (task), but not code that she wrote herself.

6 Using the Rosetta Wiki
Because we anticipate more users than contributors for the Wiki, we use the Wiki for its main purpose:
namely to perform programming tasks. First, we explain the structure of the Wiki. Then we discuss how
to access and use the Wiki.

6.1 Structure of the Rosetta Wiki. As mentioned earlier, the Rosetta Wiki is housed at the CDAR
Sharepoint site. The edit-ability of Sharepoint enables Wiki functionality. Code for each programming
task is found as individual pages with its own web address. All pages are accessible from the Rosetta
Wiki welcome page, by moving the mouse over the blue “Task” button that turns green, shown in Figure
6.1.1:

Figure 6.1.1 Rosetta Wiki Welcome Page

6

6.2 Locating the Rosetta Wiki. For U. S. Census Bureau employees, the Rosetta Wiki is found on the
CDAR SharePoint page at: https://collab.ecm.census.gov/div/cdar/SitePages/Home.aspx. Click on
“Training” in the bar on top, and that should take the coder to “CDAR Training Links.” The first link is
“Rosetta Wiki – Welcome.” There, the coder will find a blue drop-down button that turns green with the
tasks listed when she hovers over it. The code is there for the programmer to copy and paste into an
Integrated Development Environment to run.

6.3 Example of Using the Wiki. We now present an example of how the users familiar with a
programming task in one language can use the Wiki to program the same task in another language. This
illustration applies when, say a supervisor in CDAR asks a recent hire who knows Python but not SAS to
run a Fisher Exact test, and formulate the results in SAS. The Fisher test is an F-test, and the Fisher Exact
test is for small sample sizes (In fact, the F-test is Fisher’s namesake). We go on the Sharepoint site,
mouse-over the “Task” button and choose “Run Fisher Exact Test.” As can be seen in Figure 6.2.1, there
is a link to the comma delimited file, Poly.csv. The left, platinum-background sidebar lists web pages that
were recently modified. They may be internal or external to this Rosetta Wiki.

Figure 6.2.1 Upper Left-hand Corner of Fisher Exact Test Code Page

Through this Rosetta Wiki, the coder is able to access the familiar Python code for running the Fisher
exact test. As a preliminary note, we will denote all variable names found in the prose with SMALL CAPS.
The code first imports Poly.csv, a dataset of public information of college football players with columns
NAME, HERITAGE, and STATUS, from the working directory. The test will be used to determine whether
there is a statistically significant difference in STATUS (Missed or Signed) between two groups that vary
by HERITAGE, Polynesian or Non-Polynesian.

Table 1. MS Excel Layout of First Ten Rows of Poly.csv1

Position Name Heritage Status

DT Haloti Ngata Polynesian Missed

DE J. T. Mapu Polynesian Missed

OL Ryan Carter Non-Polynesian Missed

OL Tautusi Lutui Polynesian Missed

DE C. J. Ah You Polynesian Missed

LB Kaluka Maiava Polynesian Missed

OL Adam Hawes Non-Polynesian Missed

OL Fenuki Tupou Polynesian Missed

DT Sione Fua Polynesian Missed

DT Sealver Siliga Polynesian Missed

Figure 6.3.1 is a partial screenshot of the Sharepoint page. It displays the widest area of the page subject
to the constraints of this document. In the upper-left hand quadrant is the Python code to run a Fisher

1 None of these data are confidential.

https://collab.ecm.census.gov/div/cdar/SitePages/Home.aspx

7

exact test; in the lower-left hand quadrant, the output. In the upper-right hand quadrant is the SAS code
for the same test; in the lower right-hand quadrant, the SAS output.

Figure 6.3.1 Fisher Exact Test Sharepoint Page

Run Fisher Exact Test

R

Code

poly<-read.csv("Poly.csv")
polytab<-table(poly$Status,poly$Heritage)
print(polytab)
fish<-fisher.test(polytab,alternative="less",conf.int=F)
print(noquote(sprintf('%.4g',fish$p.value)))

Desired Result

 Non-Polynesian Polynesian
 Missed 4 21
 Signed 8 9
[1] 0.03342

Python

Code

import pandas as pd
import scipy.stats as stats
polytab=pd.crosstab(poly.Status,poly.Heritage)
print(polytab)
oddratio,pvalue=stats.fisher_exact(polytab,alternative='less')
print(format(pvalue,'.4g'))

Desired Result

Heritage Non-Polynesian Polynesian
Status
Missed 4 21
Signed 8 9
0.03342

SAS

Code

proc import datafile="poly.csv" out=poly dbms=csv replace;
proc freq data=poly;
 tables Status*Heritage /norow nocol nopercent;
run;

proc freq noprint data=poly;
 tables Status*Heritage /chisq;
 output out=poly2(keep=xpl_fish) chisq;
run;

proc print data=poly2;
 title ‘Fisher Exact Left-Sided P-value’;
run;

Desired Result

 Frequency

 Table of Status by Heritage
Status Heritage
 Non-Polynesian Polynesian Total
Missed 4 21 25
Signed 8 9 17

Total 12 30 42

Obs XPL_FISH
1 0.0334

8

When we zoom in to the third column quadrant where the Python code is housed, we observe the
following, (explanations added to the comments following a # sign that denotes comments):

import pandas as pd

import scipy.stats as stats
polytab=pd.crosstab(poly.Status,poly.Heritage)
print(polytab)
oddratio,pvalue=stats.fisher_exact(polytab,alternative='less')
print(format(pvalue,'.4g'))

The code dictates the program to print results of the cross-tabulation and the p-value. The user can copy
the above code and it paste it into an Interactive Development Environment (IDE), yielding the following
output. The yellow highlight for the p-value was added for purposes of this document.

Heritage Non-Polynesian Polynesian
Status
Missed 4 21
Signed 8 9
0.03342

The task is done in the following three steps. First, the Poly.csv file is read using the read_csv() function
which is part of the pandas module. Pandas is a Python module for statistical analysis, and an acronym
for “panel data.” We can designate it with the shorthand “pd” in order to avoid having to repeatedly
typing out the entire word. Second, a two-way frequency table is created using the crosstab() function,
also of the pandas module. Finally, the fisher_exact() function from Python’s stats module is used to
determine whether or not the null hypothesis that STATUS and HERITAGE are the same, in effect, to
determine whether observations that belonged to one HERITAGE group were less likely to have a certain
STATUS as the other HERITAGE group.

The crux of the task is executed in the second-to-last line. A one-sided Fisher test is performed, with the
two HERITAGE groups being the same with regards to STATUS as the null hypothesis, and the Non-
Polynesian group being less likely to sign than the Polynesian group as the alternative hypothesis. The
function stats.fisher_exact outputs two values, the odds ratio and the p-value, which we designate as
oddratio and pvalue. Then direct Python to print the p-value, set to four significant digits.

To implement those three steps in SAS, we move to the fourth column, giving us the following code:

proc import datafile="poly.csv" out=poly dbms=csv replace;
options nocenter pageno=1;
ods pdf file=’M:\Rosetta Wiki\SAS\fisher_exact.pdf’;
ods pdf startpage=no;

proc import datafile="poly.csv" out=poly dbms=csv replace;
proc freq data=poly;
 tables Status*Heritage /norow nocol nopercent;
run;
proc freq noprint data=poly;
 tables Status*Heritage /chisq;
 output out=poly2(keep=xpl_fish) chisq;
run;

proc print data=poly2;
 title ‘Fisher Exact Left-Sided P-value’;
run;

9

The coder imports the CSV file Poly.csv and outputs it into a SAS dataset called “poly,” and designates
the database management system (DBMS) as “csv” for a CSV file. The “replace” directs the SAS engine to
have the new dataset replace any datasets created during the session named “poly.” Frequencies are
computed, then a chi-square test, with extra code to suppress all the default output that we do not
need so that all we see is the p-value for the Fisher Exact test. The code produces the output as was
seen in Figure 6.3.1.

7 Next Steps
It is intended that code for more tasks and additional languages will be added as the CDAR’s needs
evolve, including legacy and innovative disclosure avoidance methods and techniques. In this Rosetta
Wiki interface, code for specific tasks is presented side-by-side. In this user’s guide, code and output will
be presented “stacked”; i.e., the code and output will be presented sequentially and not in parallel. The
ultimate goal is to make this Wiki query-able, isolating two languages in the user interface like Google
Translate, enabling the user to enter a task in one language and have it show up in one other.

8 Conclusion
In this paper, we introduced the Rosetta Wiki, a repository of task-driven code in R, Python, and SAS,
situated this Wiki among related previous work, unpacked the motivation behind it, and discussed how
to use it with examples. This paper contains instructions on augmenting the Wiki, enabling further work
to be done.

9 References

CRAN. The Comprehensive R Archive Network. https://cran.r-project.org
Google. Google Translate. https://translate.google.com
Kleinman, Ken and Nicholas J. Horton. 20D. SAS and R. Boca Raton, FL: CRC Press.
Mol, Mike. 2007. Rosetta Code. http://rosettacode.org/wiki/Rosetta_Code.
Muenchen, Robert A. 2016. R for SAS and SPSS Users. New York: Springer.
Ohri, Ajay. 2017. Python for R Users. New York: Wiley.
Python. The Official Home of the Python Programming Language. https://www.python.org
SAS. SAS: Analytics, Business Intelligence, and Data Management.

https://www.sas.com/en_us/home.html

https://cran.r-project.org/
https://translate.google.com/
https://www.python.org/
https://www.sas.com/en_us/home.html

10

Appendix A: RStudio (for new R programmers)

For code that is relatively long, coding may be better done in a text editor or interactive development
environment (IDE). In this section, we recommend using RStudio for programming in R. We chose
RStudio because it is available at the U.S. Census Bureau. When outside the Bureau, or not using its
machines, this can be downloaded from http://rstudio.com, with necessary instructions on installation.
After download, click on the R icon from your desktop, which should look like Figure A.1:

Figure A.1 RStudio Icon

When the coder opens R Studio, she should see something akin to Figure A.2:

Figure A.2 R Start Screen

http://rstudio.com/

11

There are many useful features in R Studio. Explore the entire application. To focus on the left half of the
interactive environment, which is the R console, here is what one would see as shown in Figure A.3.

Figure A.3 Opening R Script

We recommend a text editor for longer code. R Script, R Notebook, or R Markdown are found by
selecting “File,” then “New File.” R Script is the most user-friendly of the three. Try entering and running
code in the console, as shown in Figure A.4:

Figure A.4 R Console

Highlight the code, then click “Run.” Alternatively, Ctrl+Enter runs the highlighted block. If no block is
highlighted, Ctrl+Enter runs the line the cursor is on. Finally, click on the expand item on the console to
see the result, which should appear in the console, as shown below in Figure A.5:

Figure A.5 R Function Code

12

Appendix B: Getting Started (for new programmers)

The following is a demonstration of performing the following tasks in R, Python, and SAS using Linux and
PC: opening a session, running a “Hello World!” program, closing the program. The first step is to write
the program in a text editor. The availability of the three software programs variables by division. What
we present is what is available in the current environment at CDAR. For most Census computers, SAS is
pre-installed to the PC. R and Python can be installed after approval from the Census Standards Working
Group.

B.1 Opening a Hello World Session

B.1.1 Opening a Hello World Session in Linux

To open R, Python, or SAS in the Linux environment, one should enter the following command to run the
following at the command prompt, as shown in Figure B.1: qsub -I -X

Figure B.1 Opening Statistical Programs from Linux

From there, the coder can run commands to open Hello world programs. The command can be found in
the following table:

 Script File Command

R hello_world.R Rscript hello_world.R

Python hello_world.py python hello_world.py

SAS hello_world.sas qsas hello_world

B.1.2 Opening a Hello World Program in PC

SAS, and R and Python (after they are installed) are accessible from the start menu. See Figures B.2-B.4.

Figure B.2 Opening PC R

13

Figure B.3 Opening PC Python

Figure B.4 Opening PC SAS

14

B.2 Running a Hello World Program

The actual script for the Hello World program for which instructions are found in section B.1 in the three
languages and their accompanying results are:

 Code Desired Result

R print("Hello World!”, quote = F) [1] Hello World!
Python print("Hello World!") Hello World!
SAS data hello_world;

 Hello_World="Hello World!";
run;

proc print data=hello_world;
 var Hello_World;
run;

Obs Hello_World
1 Hello World!

B.3 Terminate a Session

 Code

R quit()

Python exit()

SAS endsas;

15

Appendix C: Beginning Functions (for new programmers)

C.1 Set Working Directory and Return Working Directory

The following task:
1. sets the working directory, enabling the user to avoid typing out the entire path each time, and
2. print the working directory to ensure it was done properly.

The print() functions in R and Python are necessary to print whenever we run a saved script. When just
running code from within the environment, the function is not necessary; i.e., instead of print(getwd())
or print(os.getcwd()), just getwd() or getcwd(), respectively, will do.

Set Working
Directory

Code Desired Result

R

setwd('M:/Users/Nelson/Rosetta Wiki/'
print(getwd()))

[1] "M:/Users/Nelson/Rosetta Wiki"

Python
os.chdir("M:/Users/Nelson/Rosetta
Wiki/Python/")
print(os.getcwd())

'M:\\Users\\Nelson\\Rosetta Wiki\\Python'

SAS
libname rosetta 'M:\Users\Nelson\Rosetta
Wiki\SAS\";

1 libname rosetta 'M:\Users\Nelson\Rosetta
Wiki\SAS ;NOTE: Libref ROSETTA was successfully
assigned as follows: Engine: V9 Physical
Name: M:\Users\Nelson\Rosetta Wiki\SAS

16

C.2 Install and Load Add-On Package

The following task entails installing and loading an add-on package. The R console lists the dependencies
required for the package. One may wonder what the dependency zoo does; it contains functions for
time series, often necessary for computing stochastic differential equations. This particular R package,
sde, contains a description with an unusual amount of detail. This function is not readily available in SAS.

Load Add-
on Package

Code Desired Result

R setwd('M:/Users/Nelson/Rosetta Wiki/')
print(getwd())

To install: install.packages("sde")
To Load:
library(sde)

Loading required package: MASS
Loading required package: stats4
Loading required package: fda
Loading required package: splines

Attaching package: ‘fda’

The following object is masked from
‘package:graphics’:

 matplot

Loading required package: zoo

Attaching package: ‘zoo’

The following objects are masked from

‘package:base’:

 as.Date, as.Date.numeric

sde 2.0.15

Companion package to the book
‘Simulation and Inference for

Stochastic Differential Equations With
R Examples’

Iacus, Springer NY, (2008)
To check the errata corrige of the book,

type vignette("sde.errata")

Python Note: The following code should be entered after opening up
Ananconda and prior to entering Python, when the coder is not at
the U. S. Census Bureau.
To install: pip install sdeint
To Load (In Python): import sdeint 1 I

SAS Not readily available

17

C.3 Concatenate Matrices

In this module, matrices are created and joined together. Unlike Python and SAS, R fills matrices along
columns instead of rows. Therefore, it's necessary to use the byrow=T argument with matrix(). Python
output is stored in .txt files because its display of matrices in double brackets creates problems in HTML.
In C.3.1, two 2 by 4 matrices are created. In C.3.2, those two are joined horizontally. In C.3.2, those two
are joined vertically. For SAS, proc iml requires that IML is installed. Note that Python requires the
modules numpy for numerical processing, and pandas, which transforms the syntax to resemble R to a
remarkable degree.

C.3.1 Create a 2x4 Matrix

Create 2X4 Matrix Code Desired Result

R install.packages("abind")
library(abind)
a<-matrix(1:8,2,4,byrow=T)
print(a)
b<-matrix(9:16,2,4,byrow=T)
print(b)

 [,1] [,2] [,3] [,4]
[1,] 1 2 3 4
[2,] 5 6 7 8

 [,1] [,2] [,3] [,4]
[1,] 9 10 11 12
[2,] 13 14 15 16

Python import numpy as np

a = np.array(list(range(1,9))).reshape(2,4)
print(a)
b = np.array(list(range(9,17))).reshape(2,4)
print(b)

ab = np.concatenate((a,b),axis=1) # Join two matrices column-wise
print(ab)

c = np.array(list(range(1,25))).reshape(6,4)
print(c)
ac = np.concatenate((a,c),axis=0) # Join two matrices row-wise
print(ac)

[[1 2 3 4]
 [5 6 7 8]]

[[9 10 11 12]
[13 14 15 16]]

SAS proc iml;
x=1:8;
a=shape(x,2,4);
print(a);
y=9:16;
b=shape(y,2,4);
print(b);
quit;

a
1 2 3 4
5 6 7 8

b
9 10 11 12
13 14 15 16

18

C.3.2 Join Matrices Horizontally

Join Matrices Horizontally Code Desired Result

R #Simlar to cbind for dataframes
ab=abind(a,b,along=2)
print(ab)

 [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,] 1 2 3 4 9 10 11 12
[2,] 5 6 7 8 13 14 15 16

Python ab = np.concatenate((a,b),axis=1)
print(ab)

[[1 2 3 4 9 10 11 12]
 [5 6 7 8 13 14 15 16]]

SAS proc iml;
x=1:8;
a=shape(x,2,4);
print(a);
y=9:16;
b=shape(y,2,4);
print(b);
ab=a||b;
print(ab);
quit;

 ab
1 2 3 4 9 10 11 12
5 6 7 8 13 14 15 16

The Python tasks requires the numpy module (abbreviated in the code as np) to form an array. In both R
and Python, arrays are objects that contain elements of a single type.

C.3.3 Join Matrices Vertically

Join Matrices
Vertically

Code Desired Result

R c<-matrix(1:24,6,4,byrow=T)
print(c)

#Join two matrices vertically

#Similar to rbind() for dataframes
ac=abind(a,c,along=1)
print(ac)

 [,1] [,2] [,3] [,4]
[1,] 1 2 3 4
[2,] 5 6 7 8
[3,] 9 10 11 12
[4,] 13 14 15 16
[5,] 17 18 19 20
[6,] 21 22 23 24

 [,1] [,2] [,3] [,4]
[1,] 1 2 3 4
[2,] 5 6 7 8
[3,] 1 2 3 4
[4,] 5 6 7 8
[5,] 9 10 11 12
[6,] 13 14 15 16
[7,] 17 18 19 20
[8,] 21 22 23 24

Python c = np.array(list(range(1,25))).reshape(6,4)
print(c)
ac = np.concatenate((a,c),axis=0) # Join two matrices row-wise
 print(ac)

[[1 2 3 4]
 [5 6 7 8]
 [9 10 11 12]
 [13 14 15 16]
 [17 18 19 20]
 [21 22 23 24]]

[[1 2 3 4]
 [5 6 7 8]
 [1 2 3 4]
 [5 6 7 8]
 [9 10 11 12]
 [13 14 15 16]
 [17 18 19 20]
 [21 22 23 24]]

19

C.4 Matrix Mathematical Operations

The following code performs matrix transpose, matrix multiplication, and matrix inversion.

C.4.1 Transpose a Matrix

Transpose a Matrix Code Desired Result

R

install.packages("optimbase")
install.packages("abind")
library(optimbase)
library(abind)
a=matrix(1:4,2,2,byrow = T)
print(a)
at=transpose(a)
print(at)

 [,1] [,2]
[1,] 1 2
[2,] 3 4
 [,1] [,2]
[1,] 1 3
[2,] 2 4

Python

a=np.array(list(range(1,5))).reshape(2,2)
print(a)
at=a.transpose()
print(at)

[[1 2]
 [3 4]]
[[1 3]
 [2 4]]

SAS

proc iml;
x=1:4;
a=shape(x,2,2);
print(a);
at=t(a);
print(at);
quit;

a
1 2
3 4

at
1 3
2 4

SAS proc iml;
x=1:8;
a=shape(x,2,4);
print(a);
y=9:16;
b=shape(y,2,4);
print(b);
ab=a||b;
print(ab);
z=1:24;
c=shape(z,6,4);
print(c);
ac=a//c;
print(ac);
quit;

c

1 2 3 4
5 6 7 8

9 10 11 12
13 14 15 16
17 18 19 20
21 22 23 24

ac

1 2 3 4
5 6 7 8
1 2 3 4
5 6 7 8

9 10 11 12
13 14 15 16
17 18 19 20
21 22 23 24

20

C.4.2 Multiply Matrices

Multiply Matrices Code Desired Result

R a<-matrix(c(5,2,7,3),2,2,byrow=T)
print(a)
a_inv=solve(a)
print(a_inv)

b=matrix(c(3,5,2,2,9,8),3,2,byrow=T)
print(b)

print(b%*%a)

 [,1] [,2]
[1,] 5 2
[2,] 7 3

 [,1] [,2]
[1,] 3 5
[2,] 2 2
[3,] 9 8

 [,1] [,2]
[1,] 50 21
[2,] 24 10
[3,] 101 42

Python import numpy as np
a=np.matrix('5 2; 7 3')
print(a)

b=np.matrix('3 5; 2 2; 9 8')
print(b)

print(np.matmul(b,a))

[[5 2]
 [7 3]]

[[3 5]
 [2 2]
 [9 8]]

[[50 21]
 [24 10]
 [101 42]]

SAS proc iml;
a={5 2, 7 3};
print(a);
b={3 5,2 2, 9 8};
print(b);
ba=b*a;
print(ba);
quit;

a
5 2
7 3

b
3 5
2 2
9 8

ba
 50 21
 24 10
101 42

C.4.3 Invert a Matrix

Take the Inverse of a Matrix Code Desired Result

R a<-matrix(c(5,2,7,3),2,2,byrow=T)
print(a)
a_inv=solve(a)
print(a_inv)

 [,1] [,2]
[1,] 5 2
[2,] 7 3
 [,1] [,2]
[1,] 3 -2
[2,] -7 5

Python import numpy as np
a=np.matrix('5 2; 7 3')
print(a)

a_inv=a.I
print(a_inv)

[[5 2]
[7 3]]
[[3. -2.]
 [-7. 5.]]

SAS

proc iml;
a={5 2, 7 3};
print(a);
a_inv=inv(a);
print(a_inv);
quit;

a
5 2
7 3

a_inv
 3 -2
-7 5

21

C.5 Merge Datasets

The following code imports two CSV files on players from the World Baseball Classic: wbc_team and
wbc_stat and merges them by the key variable COUNTRY. The resulting dataset is extensive enough that
we store them in separate text files.

Merge
Datasets

Code Desired Result

R

wbc_team<-read.csv('wbc_team.csv')
wbc_stat<-read.csv('wbc_stat.csv')
merged_data<-merge(wbc_team,wbc_stat,by='COUNTRY')
print(wbc_team)
print(wbc_stat)
print(merged_data)

RWbc.txt

Python

import pandas

wbc_team = pandas.read_csv('wbc_team.csv')
wbc_stat = pandas.read_csv('wbc_stat.csv')
merged_data = pandas.merge(wbc_team,wbc_stat,on=['COUNTRY'])

print(wbc_team)
print(wbc_stat)
print(merged_data)

wbc.desiredresult

SAS

libname rosetta 'h:\';

proc import datafile = "wbc_statistics.csv"
 out=rosetta.wbc_stat dbms=csv replace;
run;

proc import datafile = "h:\wbc_team.csv"
 out=rosetta.wbc_team dbms=csv replace;
run;

proc sort data=rosetta.wbc_stat;
 by COUNTRY;
run;

proc sort data=rosetta.wbc_team;
 by COUNTRY;
run;

data merged_data;
 merge rosetta.wbc_stat(in=a) rosetta.wbc_team(in=b);
 by COUNTRY;
 if a and b;
proc print data=merged_data;
run;

saswbc.txt

https://collab.ecm.census.gov/div/cdar/Training/Shared%20Documents/RWbc.txt
https://collab.ecm.census.gov/div/cdar/Training/Shared%20Documents/wbc.desiredresult
https://collab.ecm.census.gov/div/cdar/Training/Shared%20Documents/saswbc.txt

22

C.6 Convert Numeric to Character String

This section creates a numeric variable named jack, checks to see what type of variable it is, converts
jack into a character string, and confirms that jack has been converted into a character string.

Convert Numeric into String Code Desired Result

R jack=17.01
print(jack)
print(typeof(jack))
jack_str=toString(jack)
print(is.character((jack_str)))

[1] 17.01

[1] "double"
[1] TRUE

Python jack=17.01
print(jack)
print(type(jack))
jack_str=(str(jack))
isinstance(jack_str,str)

17.01
<class 'float'>
Out[29]: True

SAS data testing;
 length cjack $10;
 jack=17.01;
 cjack=put(jack,5.2);
 if jack-int(jack)=0 then v_type="integer";
 else v_type="float";
 if vtype(cjack)="C" then flag="true";
 else flag="false";
run;
proc print data=testing;
 var jack v_type flag;
run;

Obs jack v_type flag
 1 17.01 float true

C.7 Concatenate Character Strings Separated by a Comma

Concatenate different character strings into one-character string with a comma separator.

Concatenate Strings Code Desired Result

R mystring<-"CDARs of Lebanon"
cat(mystring,"tall and lofty",sep=", ")

CDARs of Lebanon, tall and lofty

Python mystring = "CDARs of Lebanon"
", ".join([mystring,"tall and lofty"])

'CDARs of Lebanon, tall and lofty'

SAS data concat;
 mystring="CDARs of Lebanon";
new3=catx(', ',mystring,"tall and lofty");
run;
proc print data=concat;
 var new3;
run;

Obs new3
1 CDARs of Lebanon, tall and lofty

C.8 Concatenate Numbers Separated by a Space

Concatenate different character strings into one-character string separated by a space.

Concatenate Numbers
Separated by a Space

Code Desired Result

R cat(1:10) 1 2 3 4 5 6 7 8 9 10

Python " ".join([str(i) for i in range(1,11)]) '1 2 3 4 5 6 7 8 9 10'

SAS data catnum;
 /* A string of numbers without the separator. */
 newstring=catx(' ',1,2,3,4,5,6,7,8,9,10);
proc print data=catnum;
run;

Obs newstring
 1 1 2 3 4 5 6 7 8 9 10

23

C.9 Round Numbers

In this module, we take an array of numbers called dez, and round them in three ways: (1) take the floor,
which is the largest integer equal or smaller than the number, the ceiling, which is the smallest integer
equal or greater than the number, and the round, the nearest integer to the number.

C.10 Format Numbers to Four Significant Digits

In this module, we take the number π and format it to four significant digits the following ways: with
one leading space, in scientific notation, to four significant figures, and with leading negative and
positive signs. The last three of the four use C++ formatting for R and Python, and both languages are
based on C. Sprintf stands for “string print.”

All numbers will be rounded to four significant digits, in accordance with Data Stewardship and
Executive Policy Committee (DSEP) rounding policy of the U.S. Census Bureau.

C.10.1 Produce Designated Number of Significant Digits Using C++ Style Formatting

Format to Significant Digits Code Desired Result

R print(sprintf("% 4g", pi)) [1] "3.142"

Python from math import pi
print(format(pi,'.4g'))

3.142

SAS data sigdig;
 w=constant("pi");
 w1=round(w,10**(int(log10(abs(w)))-3));
run;

proc print data=sigdig;
 var w1;
run;

Obs w1
1 3.142

Round Numbers Code Desired Result

R

dez<-c(4.6,3.6,4.2,1.9,56.8,12.0,1.8)
print(dez)
print(floor(dez))
print(ceiling(dez))
print(round(dez))

[1] 4.6 3.6 4.2 1.9 56.8 12.0 1.8
[1] 4 3 4 1 56 12 1
[1] 5 4 5 2 57 12 2
[1] 5 4 4 2 57 12 2

Python

import numpy
dez = numpy.array([4.6,3.6,4.2,1.9,56.8,12.0,1.8])
print(dez)
print(numpy.floor(dez))
print(numpy.ceil(dez))
print(numpy.round(dez))

[4.6 3.6 4.2 1.9 56.8 12. 1.8]
[4. 3. 4. 1. 56. 12. 1.]
[5. 4. 5. 2. 57. 12. 2.]
[5. 4. 4. 2. 57. 12. 2.]

SAS proc iml;
dez={4.6 3.6 4.2 1.9 56.8 12.0 1.8};
fdez=floor(dez);
cdez=ceil(dez);
rdez=round(dez);
m=dez//fdez//cdez//rdez;
print(m);
quit;

 m
4.6 3.6 4.2 1.9 56.8 12 1.8
4 3 4 1 56 12 1
5 4 5 2 57 12 2
5 4 4 2 57 12 2

24

C.10.2 Produce Numbers with Leading Spaces

Format with
Leading Space

Code Desired Result

R print(sprintf("% .4g",pi)) [1] " 3.142"

Python from math import pi
print("{:6.3f}".format(pi,'.4g'))

 3.142

SAS data lead;
 y=constant("pi");
 y_round=round(y,10**(int(log10(abs(y)))-3));
 y1=" "||y_round;
run;

proc print data=lead;
 var y_round y1;
run;

Obs y_round y1
1 3.142 3.142

C.10.3 Produce Numbers in Scientific Notation Using C++ Style Formatting

The authors are not aware of a method to both simultaneously force the number into scientific notation
and format to a certain number of significant figures.

Produce Numbers
in Scientific

Notation

Code Desired Result

R print(sprintf("%e",pi)) #Exponential Notation with lower-case "e"
print(sprintf("%E",pi)) #Exponential Notation with upper-case "e"

[1] "3.141593e+00"
[1] "3.141593E+00"

Python from math import pi
print("%e" % pi)
print("%E" % pi)

3.141593e+00
3.14E+00

SAS data scinote;
 z=constant(“pi”);
run;

proc print data=scinote;
 format z E13.6;
 var z;
run;

Obs z
1 3.141593E+00

C.10.4 Produce Numbers with Positive and Negative Signs Using C++ Style Formatting

 Positive and Negative
Signs

Code Desired Result

R sprintf("%+.4g",pi)
sprintf("%+.4g",-pi)

[1] "+3.142"
[1] "-3.142"

Python from math import pi
print("%+.4g" % pi)
print("%+.4g" % -pi)

3.142
-3.142

SAS data signage;
 a=constant("pi");
 a_round=round(a,10**(int(log10(abs(a)))-3));
 b=-a_round;
run;

proc print data=signage;
 var a_round b;
run;

Obs a_round b

 1 3.142 -3.142

25

C.11 Create a Function

In this module, we create a function, 𝑒𝑥𝑝𝑦 = 𝑎 × 3𝑏, wherein the user can input his own values for a
and b. In SAS, this is done in a macro. The executable part of an R function is enclosed by curly-braces,
while that in Python is blocked off by indentation.

Create a Function to Take the Exponent,
with User-defined Parameters

Code Desired Result

R expy = function(a,b)
{a*exp(0.5*b)}

print(expy(3,7))

[1] 99.34636

Python from math import exp
def expy(a,b):
 return a*exp(0.5*b)
print(expy(3,7))

99.3463558761

SAS %macro expy(a,b);
 data expy;
 expy=&a*exp(0.5*&b);
 proc print data=expy;
 run;
%mend;
%expy(3,7);
run;

Obs expy
1 99.3464

26

C.12 Impute Missing Values and Collapse Variables

Imputing missing values is a large part of the work done at the U.S. Census Bureau. We create a vector
with missing values (denoted NA, NaN, and . in R, Python, and SAS, respectively). Then we use an if-else
statement to replace missing values with zeroes. The ifelse function in R works similar to the =IF
statement in Excel—the arguments, are the condition, the value if the condition is true, and then value if
the condition is false. In Python, where replaces ifelse. In SAS, the extended form of an if-else
statement is used. Section C.11.3 entails taking the same vector we have created, and changing all
numbers 5 and under to 5, and all numbers over 5 to 10.

C.12.1 Create a Vector with Missing Values

Create a Vector with Missing Values

R

Code

#Ifelse and Nested Ifelse Statement, Similar to Excel's =IF()
flow<-c(1,2,3,NA,6,7,9,NA) #A vector with the 4th&10th elements missing
print(flow)

Desired Result

[1] 1 2 3 NA 6 7 9 NA

Python

Code

import numpy
flow=numpy.array([1,2,3,None,6,7,9,None])
print(flow)

Desired Result

[1 2 3 None 6 7 9 None]

SAS

Code

data flow_master;
 array flow {8} flow1-flow8;
 input (flow1-flow8) (: 1.);
 datalines;

Desired Result

Obs flow1 flow2 flow3 flow4 flow5 flow6 flow7 flow8
 1 1 2 3 . 6 7 9 .

27

C.12.2 Impute Missing Values of a Vector Using Conditional Processing

 Impute Missing Values

R

 Code

flow.imputed<-ifelse(is.na(flow)==TRUE,0,flow)
print(flow.imputed)

Desired Result

[1] 1 2 3 0 6 7 9 0

Python

Code

flow_imputed = flow
flow_imputed[numpy.where(numpy.equal(flow,None))]=0
print(flow_imputed)

Desired Result

[1 2 3 0 6 7 9 0]

SAS

Code

data flow_imputed;
 set flow_master;
 array flow {8} flow1-flow8;
 do k=1 to 8;
 if flow[k]=. then flow[k]=0;
 end;
run;

proc print data=flow_imputed;
 var flow1-flow8;
run;

Desired Result

Obs flow1 flow2 flow3 flow4 flow5 flow6 flow7 flow8
 1 1 2 3 0 6 7 9 0

28

C.12.3 Collapse a Variable

Collapse Variable

R Code

flow.imp.collapsed<-ifelse(is.na(flow)==TRUE,0,ifelse(flow>5,10,5))
print(flow.imp.collapsed)

Desired Result

[1] 5 5 5 0 10 10 10 0

Python

Code

flow_imp_collapsed = numpy.array([10 if i>5 else 5 for i in flow_imputed])
print(flow_imp_collapsed)

Desired Result

[5 5 5 0 10 10 10 0]

SAS

Code

data flow_collapsed;
 set flow_master;
 array flow {8} flow1-flow8;
 do k=1 to 8;
 if flow[k]=. then flow[k]=0;
 else if flow[k] > 5 then flow[k]=10;
 else flow[k]=5;
 end;
run;

proc print data=flow_collapsed;
 var flow1-flow8;
run;

Desired Result

Obs flow1 flow2 flow3 flow4 flow5 flow6 flow7 flow8
 1 5 5 5 0 10 10 10 0

29

Appendix D: Beginning Statistics (for new statisticians)

D.1 Compute Frequencies

In this module, a football CSV file named Poly.csv is read into a data frame, then bivariate frequencies
are computed. Note that in SAS, if the user outputs as a table, absolute frequencies are computed;
however, if the output is to a list, the user does not see this.

Compute
Frequencies

Code Desired Result

R poly<-read.csv("poly.csv")
polytab<-table(poly$Status,poly$Heritage)
print(polytab)

 Non-Polynesian Polynesian
 Missed 4 21
 Signed 8 9

Python import pandas
poly=pd.read_csv("poly.csv")
polytab=pd.crosstab(poly.Status,poly.Heritage)
print(polytab)

Heritage Non-Polynesian Polynesian
Status
Missed 4 21
Signed 8 9

SAS proc import datafile="h:/poly.csv" out=poly dbms=csv replace;

proc freq data=poly;
 tables Status*Heritage/norow nocol nopercent nocum list;
run;

Status Heritage Frequency
Missed Non-Polynesian 4
Missed Polynesian 21
Signed Non-Polynesian 8
Signed Polynesian 9

30

D.2 Compute Total Proportional Frequencies

This module entails computing proportional bivariate frequencies. Also note that proportions in R and
Python are represented by decimals, while in SAS they are represented as percentages. For instance,
0.0952 in R is 9.52 [%] in SAS.

Compute Total Proportional Frequencies

R

Code

poly<-read.csv("poly.csv")
polytab<-prop.table(poly$Status,poly$Heritage)
pptab<-prop.table(polytab)
pptab.df<-data.frame(unclass(pptab))
status<-rownames(polytab)
pptab.df.fmt<-data.frame(lapply(pptab.df,sprintf,fmt="%.4g"))
Status<cbind(status,pptab.df.fmt)
print(Status)

Desired Result

 Status Non.Polynesian Polynesian
1 Missed 0.09524 0.5
2 Signed 0.1905 0.2143

Python

Code

import os

import pandas as pd
os.chdir('c:/Users/Owner/')
pd.options.display.float_format="{0:1.4g}".format
poly = pd.read_csv("poly.csv")
polytab=pd.crosstab(poly.Status,poly.Heritage,normalize='all')

Desired Result

print(polytab)
Heritage Non-Polynesian Polynesian
Status
Missed 0.09524 0.5
Signed 0.1905 0.2143

SAS

Code

proc import datafile="h:/poly.csv" out=poly dbms=csv replace;

proc freq data=poly;
 tables Status*Heritage /norow nocol nocum list;
run;

Desired Result

Status Heritage Frequency Percent
Missed Non-Polynesian 4 9.52
Missed Polynesian 21 50.00
Signed Non-Polynesian 8 19.05
Signed Polynesian 9 21.43

31

D.3 Compute Row Proportional Frequencies

The following code computes proportional frequencies for each row. R uses 1 to designate row and 2 to
designate column. Python generally uses 0 for row and 1 for column, but in this case, it’s “index” for row
and “columns” for column. When computing proportional frequencies across rows or columns in SAS,
the user cannot use the list option. However, for tables in SAS, the engine automatically computes
absolute frequencies; in R and Python, this does not happen. Also in SAS, one would specify nocol to
specify that we want column frequencies only. Note that SAS contains the absolute frequencies in the
rows above the proportional frequencies for tables. As before, proportions are represented as decimals
in R and Python, but as percentages in SAS.

Compute Row Proportional Frequencies

R

Code

poly<-read.csv("poly.csv")
polytab<-prop.table(poly$Status,poly$Heritage)
pptab<-prop.table(polytab,1)
pptab.df<-data.frame(unclass(pptab))
status<-rownames(polytab)
pptab.df.fmt<-data.frame(lapply(pptab.df,sprintf,fmt="%.4g"))
Status<cbind(status,pptab.df.fmt)
print(Status)

Desired Result

 Status Non.Polynesian Polynesian
1 Missed 0.16 0.84
2 Signed 0.4706 0.5294

Python

Code

import os
import pandas as pd
os.chdir('c:/Users/Owner/')
pd.options.display.float_format=”{0:1.4g}”.format
poly = pd.read_csv("poly.csv")
polytab=pd.crosstab(poly.Status,poly.Heritage,normalize='index')
print(polytab)

Desired Result

Heritage Non-Polynesian Polynesian
Status
Missed 0.16 0.84
Signed 0.4706 0.5294

SAS

Code

proc import datafile="h:/poly.csv" out=poly dbms=csv replace;
proc freq data=poly;
 tables Status*Heritage/nocol;
run;

Desired Result

Table of Status by Heritage

 Status Heritage
 Non-Polynesian Polynesian Total
Frequency Missed 4 21 25
Percent 9.52 50.00 59.52
Col Percent 16.00 84.00

 Signed 8 9 17
 19.05 21.43 40.48
 47.06 52.94

 Total 12 30 42
 28.57 71.43 100.00

32

D.4 Compute Column Proportional Frequencies

The directions for computing column percentage frequencies are spelled out in the previous section.

Compute Column Proportional
Frequencies

Code

R

poly<-read.csv("Poly.csv")
polytab<-table(poly$Status,poly$Heritage)
print(polytab)
fish<-fisher.test(polytab,alternative="less",conf.int=F)
print(noquote(sprintf('%.4g',fish$p.value)))

Desired Result

Non-Polynesian Polynesian
 Missed 4 21
 Signed 8 9
[1] 0.03342

Python

Code

import pandas as pd
import scipy.stats as stats
polytab=pd.crosstab(poly.Status,poly.Heritage)
print(polytab)
oddratio,pvalue=stats.fisher_exact(polytab,alternative='less')
print(format(pvalue,'.4g'))

Desired Result

Heritage Non-Polynesian Polynesian
Status
Missed 0.3333 0.7
Signed 0.6667 0.3

SAS

Code

proc import datafile=”/poly.csv" out=poly dbms=csv replace;
proc freq data=poly;
 tables Status*Heritage/norow;
run;

Desired Result

Table of Status by Heritage

 Status Heritage
 Non-Polynesian Polynesian Total
Frequency Missed 4 21 25
Percent 9.52 50.00 59.52
Col Percent 33.33 70.00

 Signed 8 9 17
 19.05 21.43 40.48
 66.67 30.00

 Total 12 30 42
 28.57 71.43 100.00

33

Appendix E: Advanced Statistical Modeling (for experienced statisticians
and programmers)

E.1 Run Fisher Test

Among the Fisher Test’s a Fisher Exact test is one used for small sample sizes. In all three programming
languages of interest, running a Fisher test entails creating a frequency table first. In R and Python,
creating the table and administering the test are done sequentially. In SAS, use fisher in proc freq.

Run Fisher Test

R

Code

poly<-read.csv("Poly.csv")
polytab<-table(poly$Status,poly$Heritage)
print(polytab)
fish<-fisher.test(polytab,alternative="less",conf.int=F)
 print(noquote(sprintf('%.4g',fish$p.value)))

Desired Result

Non-Polynesian Polynesian
 Missed 4 21
 Signed 8 9
[1] 0.03342

Python

Code

import pandas as pd
import scipy.stats as stats
polytab=pd.crosstab(poly.Status,poly.Heritage)
print(polytab)
oddratio,pvalue=stats.fisher_exact(polytab,alternative='less')
print(format(pvalue,'.4g'))

Desired Result

Heritage Non-Polynesian Polynesian
Status
Missed 4 21
Signed 8 9
0.03342

SAS

Code

options nocenter pageno=1;
ods pdf file=’M:\Rosetta Wiki\SAS\fisher_exact.pdf’;
ods pdf startpage=no;

proc import datafile="poly.csv" out=poly dbms=csv replace;
proc freq data=poly;
 tables Status*Heritage /norow nocol nopercent;
run;
proc freq noprint data=poly;
 tables Status*Heritage /chisq;
 output out=poly2(keep=xpl_fish) chisq;
run;
proc print data=poly2;
 title ‘Fisher Exact Left-Sided P-value’;
run;

Desired Result

Table of Status by Heritage

 Status Heritage
 Non-Polynesian Polynesian Total

Frequency Missed 4 21 25

 Signed 8 9 17

 Total 12 30 42

Obs XPL_FISH

1 0.0334

34

E.2 Add Laplace Noise to Variable

This module entails:

1. Reading in a CSV dataset on the effect drugs have on aging over several species.
2. Finding the expected value of the avg_lifespan_change.
3. Finding out the number of rows (or records) in the data frame.
4. Generating a vector of random number equal to the number of rows in the dataframe with

mean zero, and adding it to avg_lifespan_change to create a new variable lsc_noisy
5. Taking the expected value lsc_noisy. It should roughly equal avg_lifespan_change.

Note that when implementing step 3 in SAS, output is to the log. Also note that SAS currently does not
have the Laplace distribution built in to the RAND function, so PDF is used.

Add Laplace
Noise to a
Variable

Code Desired Result

R

library(rmutil)
drugage<-read.csv("drugage.csv")
sprintf("%.4g",mean(drugage$avg_lifespan_change,na.rm=T))
print(nrow(drugage))
noise=rlaplace(length(is.na(drugage$avg_lifespan_change==F)),0)
drugage$lsc_noisy=drugage$avg_lifespan_change+noise

sprintf("%.4g",mean(drugage$lsc_noisy,na.rm=T))

[1] 13.13

[1] 1316

[1] 13.11

Python

import pandas as pd
drugage=pd.read_csv("drugage.csv")

import numpy as np
print(format(drugage["avg_lifespan_change"].mean(),'.4g'))
print(len(drugage.index))
noise=np.random.laplace(0,1,len(drugage.index))
drugage["lsc_noisy"]=drugage["avg_lifespan_change"]+noise
print(format(drugage["lsc_noisy"].mean(),'.4g'))

13.13
1316
13.17

35

SAS

proc import datafile="drugage.csv" out=drugage dbms=csv;
data drugage_rec;
 set drugage end=eof;
 nobs=_N_;
 if (eof) then output;
run;
proc print data=drugage_rec;
 var nobs;
run;
data drugage;
 set drugage;
 noise = pdf('LAPLACE',1);
 lsc_noisy=avg_lifespan_change + noise;
run;
proc means data=drugage mean noprint;
 var avg_lifespan_change lsc_noisy;
 output out=drugage_stat(drop=_TYPE_ _FREQ_);
run;
data drugage_stat;
 set drugage_stat;
 if _STAT_ = ‘MEAN ‘;
run;
proc transpose data=drugage_stat
out=drugage_tr(rename=(_NAME_=Variable COL1=Mean));
data drugage_means;
 set drugage_tr;
 Mean=round(Mean,10**(int(log10(abs(Mean)))-3));
run;
proc print data=drugage_means;
run;

Obs nobs
1 1316

Obs Variable Mean
1 avg_lifespan_change 13.13
2 lsc_noisy 13.32

E.3 Add Gaussian Noise to Variable

This module entails:

1. Reading in a CSV dataset on the effect drugs have on aging over several species.
2. Finding the expected value of the avg_lifespan_change.
3. Finding out the number of rows (or records) in the data frame.
4. Generating a vector of random numbers equal to the number of rows in the dataframe with

mean zero, and a standard deviation of 5, and adding it to avg_lifespan_change to create a new
variable lsc_noisy.

5. Taking the expected value lsc_noisy. It should roughly equal avg_lifespan_change.

Due to differences in handling missing values, R requires modestly more work than Python, which just
treats them as if they did not exist. In SAS, step 3 outputs the number of records to the log.

36

Add Gaussian
Noise to a
Variable

Code Desired Result

R

drugage<-read.csv("drugage.csv")
sprintf("%.4g",mean(drugage$avg_lifespan_change,na.rm=T))
print(nrow(drugage))
n=length(is.na(drugage$avg_lifespan_change==F))
noise=rnorm(n,0,5)
drugage$lsc_noisy=drugage$avg_lifespan_change+noise
sprintf("%.4g",mean(drugage$lsc_noisy,na.rm = T))

[1] "13.13"

[1] 1316

[1] "13.09"

Python

import pandas as pd
drugage=pd.read_csv("drugage.csv")

import numpy as np
print(drugage["avg_lifespan_change"].mean())
n=print(len(drugage.index))
print(n)
noise=np.random.normal(0,5,n)
drugage["lsc_noisy"]=drugage["avg_lifespan_change"]+noise
print(format(drugage["lsc_noisy"].mean(),'.4g'))

13.13
1316
13.09

SAS

proc import datafile="drugage.csv" out=drugage dbms=csv;
data drugage_rec;
 set drugage end=eof;
 nobs=_N_;
 if (eof) then output;
run;
proc print data=drugage_rec;
 var nobs;
run;
data drugage;
 set drugage;
 noise = rand('NORMAL',0,5);
 lsc_noisy=avg_lifespan_change + noise;
run;
proc means data=drugage mean noprint;
 var avg_lifespan_change lsc_noisy;
 output out=drugage_stat(drop=_TYPE_ _FREQ_);
run;
data drugage_stat;

 set drugage_stat;

if _STAT_ = ‘MEAN ‘;
run;
proc transpose data=drugage_stat
out=drugage_tr(rename=(_NAME_=Variable COL1=Mean));
data drugage_means;
 set drugage_tr;
 Mean=round(Mean,10**(int(log10(abs(Mean)))-3));
run;
proc print data=drugage_means;
run;

Obs nobs
1 1316

Obs Variable Mean
1 avg_lifespan_change 13.13
2 lsc_noisy 13.32

